In mathematics, the binomial coefficient is the coefficient of the x k term in the polynomial expansion of the binomial power (1 + x) n.
In combinatorics, is interpreted as the number of k-element subsets (the k-combinations) of an n-element set, that is the number of ways that k things can be "chosen" from a set of n things. Hence, is often read as "n choose k" and is called the choose function of n and k.
The notation was introduced by Andreas von Ettingshausen in 1826,[1] although the numbers were already known centuries before that (see Pascal's triangle). Alternative notations include C(n, k), nCk, nCk, ,[2] in all of which the C stands for combinations or choices.
For natural numbers (taken to include 0) n and k, the binomial coefficient can be defined as the coefficient of the monomial Xk in the expansion of (1 + X)n. The same coefficient also occurs (if k ≤ n) in the binomial formula
(valid for any elements x,y of a commutative ring), which explains the name "binomial coefficient".
Another occurrence of this number is in combinatorics, where it gives the number of ways, disregarding order, that a k objects can be chosen from among n objects; more formally, the number of k-element subsets (or k-combinations) of an n-element set. This number can be seen to be equal to the one of the first definition, independently of any of the formulas below to compute it: if in each of the n factors of the power (1 + X)n one temporarily labels the term X with an index i (running from 1 to n), then each subset of k indices gives after expansion a contribution Xk, and the coefficient of that monomial in the result will be the number of such subsets. This shows in particular that is a natural number for any natural numbers n and k. There are many other combinatorial interpretations of binomial coefficients (counting problems for which the answer is given by a binomial coefficient expression), for instance the number of words formed of n bits (digits 0 or 1) whose sum is k, but most of these are easily seen to be equivalent to counting k-combinations.
Several methods exist to compute the value of without actually expanding a binomial power or counting k-combinations.
One has a recursive formula for binomial coefficients
with as initial values
The formula follows either from tracing the contributions to Xk in (1 + X)n−1(1 + X), or by counting k-combinations of {1, 2, ..., n} that contain n and that do not contain n separately. It follows easily that when k > n, and for all n, so the recursion can stop when reaching such cases. This recursive formula then allows the construction of Pascal's triangle.
A more efficient method to compute individual binomial coefficients is given by the formula
This formula is easiest to understand for the combinatorial interpretation of binomial coefficients. The numerator gives the number of ways to select a sequence of k distinct objects, retaining the order of selection, from a set of n objects. The denominator counts the number of distinct sequences that define the same k-combination when order is disregarded.
Finally there is a formula using factorials that is easy to remember:
where n! denotes the factorial of n. This formula follows from the multiplicative formula above by multiplying numerator and denominator by (n − k)!; as a consequence it involves many factors common to numerator and denominator. It is less practical for explicit computation unless common factors are first canceled (in particular since factorial values grow very rapidly). The formula does exhibit a symmetry that is less evident from the multiplicative formula (though it is from the definitions)
The multiplicative formula allows the definition of binomial coefficients to be extended[note 1] by replacing n by an arbitrary number α (negative, real, complex) or even an element of any commutative ring in which all positive integers are invertible:
With this definition one has a generalization of the binomial formula (with one of the variables set to 1), which justifies still calling the binomial coefficients:
This formula is valid for all complex numbers α and X with |X| < 1. It can also be interpreted as an identity of formal power series in X, where it actually can serve as definition of arbitrary powers of series with constant coefficient equal to 1; the point is that with this definition all identities hold that one expects for exponentiation, notably
If α is a nonnegative integer n, then all terms with k > n are zero, and the infinite series becomes a finite sum, thereby recovering the binomial formula. However for other values of α, including negative integers and rational numbers, the series is really infinite.
Pascal's rule is the important recurrence relation
which can be used to prove by mathematical induction that is a natural number for all n and k, (equivalent to the statement that k! divides the product of k consecutive integers), a fact that is not immediately obvious from formula (1).
Pascal's rule also gives rise to Pascal's triangle:
0: | 1 | ||||||||||||||||
1: | 1 | 1 | |||||||||||||||
2: | 1 | 2 | 1 | ||||||||||||||
3: | 1 | 3 | 3 | 1 | |||||||||||||
4: | 1 | 4 | 6 | 4 | 1 | ||||||||||||
5: | 1 | 5 | 10 | 10 | 5 | 1 | |||||||||||
6: | 1 | 6 | 15 | 20 | 15 | 6 | 1 | ||||||||||
7: | 1 | 7 | 21 | 35 | 35 | 21 | 7 | 1 | |||||||||
8: | 1 | 8 | 28 | 56 | 70 | 56 | 28 | 8 | 1 |
Row number n contains the numbers for k = 0,…,n. It is constructed by starting with ones at the outside and then always adding two adjacent numbers and writing the sum directly underneath. This method allows the quick calculation of binomial coefficients without the need for fractions or multiplications. For instance, by looking at row number 5 of the triangle, one can quickly read off that
The differences between elements on other diagonals are the elements in the previous diagonal, as a consequence of the recurrence relation (3) above.
Binomial coefficients are of importance in combinatorics, because they provide ready formulas for certain frequent counting problems:
For any nonnegative integer k, the expression can be simplified and defined as a polynomial divided by k!:
This presents a polynomial in t with rational coefficients.
As such, it can be evaluated at any real or complex number t to define binomial coefficients with such first arguments. These "generalized binomial coefficients" appear in Newton's generalized binomial theorem.
For each k, the polynomial can be characterized as the unique degree k polynomial p(t) satisfying p(0) = p(1) = ... = p(k − 1) = 0 and p(k) = 1.
Its coefficients are expressible in terms of Stirling numbers of the first kind, by definition of the latter:
The derivative of can be calculated by logarithmic differentiation:
Over any field containing Q, each polynomial p(t) of degree at most d is uniquely expressible as a linear combination . The coefficient ak is the kth difference of the sequence p(0), p(1), …, p(k). Explicitly,[note 2]
Each polynomial is integer-valued: it takes integer values at integer inputs. (One way to prove this is by induction on k, using Pascal's identity.) Therefore any integer linear combination of binomial coefficient polynomials is integer-valued too. Conversely, (3.5) shows that any integer-valued polynomial is an integer linear combination of these binomial coefficient polynomials. More generally, for any subring R of a characteristic 0 field K, a polynomial in K[t] takes values in R at all integers if and only if it is an R-linear combination of binomial coefficient polynomials.
The integer-valued polynomial 3t(3t + 1)/2 can be rewritten as
For any nonnegative integers n and k,
This follows from (2) by using (1 + x)n = xn·(1 + x−1)n. It is reflected in the symmetry of Pascal's triangle. A combinatorial interpretation of this formula is as follows: when forming a subset of elements (from a set of size ), it is equivalent to consider the number of ways you can pick elements and the number of ways you can exclude elements.
The factorial definition lets one relate nearby binomial coefficients. For instance, if k is a positive integer and n is arbitrary, then
and, with a little more work,
A special binomial coefficient is ; it equals powers of -1:
The formula
is obtained from (2) using x = 1. This is equivalent to saying that the elements in one row of Pascal's triangle always add up to two raised to an integer power. A combinatorial interpretation of this fact involving double counting is given by counting subsets of size 0, size 1, size 2, and so on up to size n of a set S of n elements. Since we count the number of subsets of size i for 0 ≤ i ≤ n, this sum must be equal to the number of subsets of S, which is known to be 2n. That is, Equation 5 is a statement that the power set for a finite set with n elements has size 2n.
The formulas
and
follow from (2), after differentiating with respect to x (twice in the latter) and then substituting x = 1.
The Chu-Vandermonde identity, which holds for any complex-values m and n and any non-negative integer k, is
and is found by expanding (1 + x)m (1 + x)n − m = (1 + x)n with (2). When m = 1, equation (7a) reduces to equation (3).
A similar looking formula, which applies for any integers j, k, and n satisfying 0 ≤ j ≤ k ≤ n, is
and is found by expanding with
From expansion (7a) using n=2m, k = m, and (4), one finds
Let F(n) denote the nth Fibonacci number. We obtain a formula about the diagonals of Pascal's triangle
This can be proved by induction using (3) or by Zeckendorf's representation (Just note that the lhs gives the number of subsets of {F(2),...,F(n)} without consecutive members, which also form all the numbers below F(n+1)).
Also using (3) and induction, one can show that
Again by (3) and induction, one can show that for k = 0, ... , n−1
as well as
which is itself a special case of the result from the theory of finite differences that for any polynomial P(x) of degree less than n,
Differentiating (2) k times and setting x = −1 yields this for , when 0 ≤ k < n, and the general case follows by taking linear combinations of these.
When P(x) is of degree less than or equal to n,
where is the coefficient of degree n in P(x).
More generally for 13b,
where m and d are complex numbers. This follows immediately applying (13b) to the polynomial Q(x):=P(m + dx) instead of P(x), and observing that Q(x) has still degree less than or equal to n, and that its coefficient of degree n is dnan.
The infinite series
is convergent for k ≥ 2. This formula is used in the analysis of the German tank problem. It is equivalent to the formula for the finite sum
which is proved for M>m by induction on M.
Using (8) one can derive
and
Many identities involving binomial coefficients can be proved by combinatorial means. For example, the following identity for nonnegative integers (which reduces to (6) when ):
can be given a double counting proof as follows. The left side counts the number of ways of selecting a subset of of at least q elements, and marking q elements among those selected. The right side counts the same parameter, because there are ways of choosing a set of q marks and they occur in all subsets that additionally contain some subset of the remaining elements, of which there are
The recursion formula
where both sides count the number of k-element subsets of {1, 2, . . . , n} with the right hand side first grouping them into those which contain element n and those which don’t.
The identity (8) also has a combinatorial proof. The identity reads
Suppose you have empty squares arranged in a row and you want to mark (select) n of them. There are ways to do this. On the other hand, you may select your n squares by selecting k squares from among the first n and squares from the remaining n squares. This gives
Now apply (4) to get the result.
Certain trigonometric integrals have values expressible in terms of binomial coefficients:
For and
These can be proved by using Euler's formula to convert trigonometric functions to complex exponentials, expanding using the binomial theorem, and integrating term by term.
For a fixed n, the ordinary generating function of the sequence is:
For a fixed k, the ordinary generating function of the sequence is:
The bivariate generating function of the binomial coefficients is:
In 1852, Kummer proved that if m and n are nonnegative integers and p is a prime number, then the largest power of p dividing equals pc, where c is the number of carries when m and n are added in base p. Equivalently, the exponent of a prime p in equals the number of positive integers j such that the fractional part of k/pj is greater than the fractional part of n/pj. It can be deduced from this that is divisible by n/gcd(n,k).
A somewhat surprising result by David Singmaster (1974) is that any integer divides almost all binomial coefficients. More precisely, fix an integer d and let f(N) denote the number of binomial coefficients with n < N such that d divides . Then
Since the number of binomial coefficients with n < N is N(N+1) / 2, this implies that the density of binomial coefficients divisible by d goes to 1.
Another fact: An integer n ≥ 2 is prime if and only if all the intermediate binomial coefficients
are divisible by n.
Proof: When p is prime, p divides
because it is a natural number and the numerator has a prime factor p but the denominator does not have a prime factor p.
When n is composite, let p be the smallest prime factor of n and let k = n/p. Then 0 < p < n and
otherwise the numerator k(n−1)(n−2)×...×(n−p+1) has to be divisible by n = k×p, this can only be the case when (n−1)(n−2)×...×(n−p+1) is divisible by p. But n is divisible by p, so p does not divide n−1, n−2, ..., n−p+1 and because p is prime, we know that p does not divide (n−1)(n−2)×...×(n−p+1) and so the numerator cannot be divisible by n.
The following bounds for hold:
Stirling's approximation yields the bounds:
and the approximation
The infinite product formula (cf. Gamma function, alternative definition)
yields the asymptotic formulas
as .
This asymptotic behaviour is contained in the approximation
as well. (Here is the kth harmonic number and is the Euler–Mascheroni constant).
The sum of binomial coefficients can be bounded by a term exponential in and the binary entropy of the largest that occurs. More precisely, for and , it holds
where is the binary entropy of .[3]
A simple and rough upper bound for the sum of binomial coefficients is given by the formula below (not difficult to prove)
Binomial coefficients can be generalized to multinomial coefficients. They are defined to be the number:
where
While the binomial coefficients represent the coefficients of (x+y)n, the multinomial coefficients represent the coefficients of the polynomial
See multinomial theorem. The case r = 2 gives binomial coefficients:
The combinatorial interpretation of multinomial coefficients is distribution of n distinguishable elements over r (distinguishable) containers, each containing exactly ki elements, where i is the index of the container.
Multinomial coefficients have many properties similar to these of binomial coefficients, for example the recurrence relation:
and symmetry:
where is a permutation of (1,2,...,r).
If , then extends to all .
Using Stirling numbers of the first kind the series expansion around any arbitrarily chosen point is
The definition of the binomial coefficients can be extended to the case where is real and is integer.
In particular, the following identity holds for any non-negative integer :
This shows up when expanding into a power series using the Newton binomial series :
One can express the product of binomial coefficients as a linear combination of binomial coefficients:
where the connection coefficients are multinomial coefficients. In terms of labelled combinatorial objects, the connection coefficients represent the number of ways to assign m+n-k labels to a pair of labelled combinatorial objects of weight m and n respectively, that have had their first k labels identified, or glued together, in order to get a new labelled combinatorial object of weight m+n-k. (That is, to separate the labels into 3 portions to be applied to the glued part, the unglued part of the first object, and the unglued part of the second object.) In this regard, binomial coefficients are to exponential generating series what falling factorials are to ordinary generating series.
The partial fraction decomposition of the inverse is given by
Newton's binomial series, named after Sir Isaac Newton, is one of the simplest Newton series:
The identity can be obtained by showing that both sides satisfy the differential equation (1+z) f'(z) = α f(z).
The radius of convergence of this series is 1. An alternative expression is
where the identity
is applied.
The binomial coefficient is generalized to two real or complex valued arguments using the gamma function or beta function via
This definition inherits these following additional properties from :
moreover,
The resulting function has been little-studied, apparently first being graphed in (Fowler 1996). Notably, many binomial identities fail: but for n positive (so negative). The behavior is quite complex, and markedly different in various octants (that is, with respect to the x and y axes and the line ), with the behavior for negative x having singularities at negative integer values and a checkerboard of positive and negative regions:
The binomial coefficient has a q-analog generalization known as the Gaussian binomial coefficient.
The definition of the binomial coefficient can be generalized to infinite cardinals by defining:
where A is some set with cardinality . One can show that the generalized binomial coefficient is well-defined, in the sense that no matter what set we choose to represent the cardinal number , will remain the same. For finite cardinals, this definition coincides with the standard definition of the binomial coefficient.
Assuming the Axiom of Choice, one can show that for any infinite cardinal .
The notation is convenient in handwriting but inconvenient for typewriters and computer terminals. Many programming languages do not offer a standard subroutine for computing the binomial coefficient, but for example the J programming language uses the exclamation mark: k ! n .
Naive implementations of the factorial formula, such as the following snippet in C:
int choose(int n, int k) { return factorial(n) / (factorial(k) * factorial(n - k)); }
are prone to overflow errors, severely restricting the range of input values. A direct implementation of the multiplicative formula works well:
unsigned long long choose(unsigned n, unsigned k) { if (k > n) return 0; if (k > n/2) k = n-k; // Take advantage of symmetry long double accum = 1; unsigned i; for (i = 1; i <= k; i++) accum = accum * (n-k+i) / i; return accum + 0.5; // avoid rounding error }
Another way to compute the binomial coefficient when using large numbers is to recognize that
is a special function that is easily computed and is standard in some programming languages such as using log_gamma in Maxima, LogGamma in Mathematica, or gammaln in MATLAB. Roundoff error may cause the returned value not to be an integer.
This article incorporates material from the following PlanetMath articles, which are licensed under the Creative Commons Attribution/Share-Alike License: Binomial Coefficient, Bounds for binomial coefficients, Proof that C(n,k) is an integer, Generalized binomial coefficients.